В.Б. Звягинцев, канд. биол. наук; А.В. Хвасько, ассистент

ИДЕНТИФИКАЦИЯ ВОЗБУДИТЕЛЕЙ БЕЛОЙ ЗАБОЛОННОЙ ГНИЛИ КОРНЕЙ ЛЕСНЫХ ПОРОД

In work the basic methods of identification of activators white decays of roots of wood breeds in field and laboratory conditions are considered.

Проблема определения и диагностики вида относится к сложнейшим в современной микологии. У возбудителей белой заболонной гнили корней — грибов рода Armillaria эта проблема обостряется широким морфологическим разнообразием плодовых тел в зависимости от региона и субстрата произрастания, что затрудняет составление четких определений. К тому же плодовые тела у грибов этого рода появляются один-два раза в году на довольно короткий промежуток времени (1–2 недели в пределах одного субстрата), что не позволяет определить вид патогена в течение всего периода вегетации. Тем не менее определение видовой принадлежности грибов рода Armillaria, распространенных на том или ином участке леса, особенно при планировании лесокультурных работ, принципиально важно, т.к. многие из них являются безвредными сапропатогенами, а другие опасными патогенами хвойных и лиственных пород. Перечисленные факторы привели нас к необходимости поиска и разработки эффективных и по возможности простых методов диагностики видов Armillaria.

В этих целях нами были опробованы следующие методы определения видовой принадлежности данной группы грибов:

- макроморфологический;
- микроморфологический;
- биометрический;
- растительных тестов;
- биохимический;
- экологический.

Наиболее распространен метод определения видовой принадлежности представителей рода Armillaria базируется на половой и вегетативной несовместимости изолятов, принадлежащих к различным биологическим видам. В результате тестирования более 400 гаплоидов и диплоидов Armillaria, собранных в различных геоботанических округах, нами было впервые выявлено на территории республики четыре вида этого рода фитопатогенных грибов (A. borealis, A. ostoyae, A. cepistipes, A. gallica). Однако данные методы идентификации изолятов рода Armillaria проблематичны, поскольку предполагают наличие карпофоров, занимают много времени (около 10 недель с момента получения образца) и требуют значительного опыта. Эти недостатки привели к поиску и интенсивному развитию других методов диагностики видов Armillaria, в том числе молекулярных.

В наших исследованиях была предпринята попытка дифференциации белорусской популяции видов Armillaria по наличию изоформ пероксидаз и фенолоксидаз. Электрофотографические спектры этих ферментов у видов Armillaria не отличались большим количеством изоформ. Однако обнаруженные изоформы являются специфическими для каждого вида вне зависимости от происхождения, места взятия и возраста образца, что подтверждает их диагностическую ценность.

A. cepistipes и A. gallica следуют пероксидазу с Rf 0.17, в чем проявляется их родство, и в то же время A. gallica выделяется присущей ей характерной только для него изоформой пероксидазы с Rf 0.21. При использовании данного буфера и системы электрофоретического разделения не выявлено ни одной изоформы пероксидазы у A. ostoyae, что также может являться диагностическим признаком. Следует отметить, что экспрессия пероксидаз у изучаемых объектов низкая.

Спектры фенолоксидаз масштаба грибов рода Armillaria отличаются большей гетерогенностью. Хотя спектры A. cepistipes, A. ostoyae и A. borealis имеют одинаковое число изоформ, эти изоферменты отличаются друг от друга своей молекулярной массой. Так, A. borealis демонстрирует присутствие фенолоксидаз с Rf 0.66 и 0.72; A. cepistipes — Rf 0.63 и 0.72. A. ostoyae обладает уникальным геномом, показывая специфичные, незнакомые для других видов фенолоксидазы (Rf 0.74 и 0.86). В спектре A. gallica выявлены изоформы фенолоксидаз с Rf 0.63; 0.66; 0.72; 0.73. Полученные результаты позволяют сделать выводы о природности данных методик для быстрой идентификации (2–3 дня) видовой принадлежности изолятов Armillaria. К недостаткам этого метода можно отнести его техническую сложность и необходимость сложного оборудования и экспериментального персонала.

Размеры и форма спор — генеративных клеток, развивающихся в наиболее благоприятное для организма время и минимально подверженные воздействию факторов внешней среды, издавна используются в таксономии. Однако, по данным различных исследователей, средние размеры спор представителей рода Armillaria существенно варьируют. Для нас значительный интерес представляло определение средних размеров базидиоспор белорусских популяций.
видов *Armillaria* и выявление возможности их использования в целях идентификации представителей этого рода.

Для определения индивидуальных различий в размерах и форме популяций базидиоспор, встречающихся в Беларуси *A. borealis, A. ostoyae, A. cepistipes* и *A. gallica*, были отобраны 112 споровых отпечатков из плодовых тел, собранных в различных геоботанических подзолах страны. Из каждого спорового отпечатка измеряли 50 спор при помощи окуляр-микрометра при увеличении в 1000 раз.

Полученные данные показывают, что средние размеры базидиоспор в зависимости от вида *Armillaria* варьируют незначительно. Индекс формы спор (отношение длины к ширине) у видов *A. borealis, A. ostoyae* и *A. cepistipes* практически идентичен (1,58; 1,55; 1,57 соответственно). В то же время отношение длины к ширине у спор *A. gallica* несколько выше и равняется 1,66. Следовательно, споры *A. gallica* имеют немного более вытянутую-эллипсоидную форму. Показатель, дающий представление о точности определения средней арифметической, в подавляющем большинстве случаев выполнял условие P<2%, что говорит о достаточно высоком качестве проведения опыта.

Степень достоверности различия средних размеров базидиоспор видов определяли при помощи критерия Фишера (F-критерий) и Стьюдента (t-критерий) путем попарного сравнения. При использовании в биологии порога доверительной вероятности (P = 0,95), нулевую гипотезу нельзя отвергнуть во всех случаях: наблюдаемую разницу в средних размерах базидиоспор видов *Armillaria* следует считать статистически недостоверной.

Таким образом, результат межвидовых сравнений свидетельствует об отсутствии видоспецифичности в размерах и индексах формы базидиоспор у четырех встречающихся в Беларуси представителей рода *Armillaria*. Можно с уверенностью утверждать о невозможности использования этого признака для идентификации местных популяций *A. borealis, A. ostoyae, A. cepistipes* и *A. gallica*.

Морфологические различия строения ветвистого мицелия, выращенного в чистых культурах на различных питательных средах, часто используются исследователями для диагностики вида у грибов. Проведенное нами изучение морфологии и скорости роста гаплоидных идиоморфных изолятов *Armillaria in vitro* не позволило выделить четкие морфологические признаки для каждого представителя этого рода. Гаплоиды всех видов предельно варьировались по скорости роста, цвету и текстуре колоний, обычно изоморфных, их типу и ветвлению.

Диплоидный мицелий обладал дискриминирующимими свойствами в несколько большей степени. Лучше всего из рассматриваемой группы выделялись изоляты *A. cepistipes*. На используемой питательной среде в подавляющем большинстве случаев крыстозные колонии этого гриба выделялись в среду красивого пигмента красновато-коричневого цвета, который отсутствовал у изолятов других видов. Кроме того, изоляты *A. cepistipes* отличались самой высокой скоростью роста поверхностного мицелия и ризоморф, которые образовывались у всех изолятов. Ветвление ризоморф *A. cepistipes* всегда моноидальное. Инфекционные структуры этого вида имели чаще всего цилиндрическую форму и относительно небольшой диаметр (до 1 мм).

Изоляты *A. gallica* обладали поверхностным мицелием, сходным такому *A. ostoyae* и *A. borealis*, и отличались лишь отсутствием воздушного мицелия поверх кустозной подложки. Колонии *A. gallica* характеризовались обширными гладкими кустозными зонами, занимающими все пространство чашки, а также тонкими многочисленными ризоморфами, густо приподнимающимися над субстратом. Развитие же необильного светло-коричневого воздушного мицелия указывало на принадлежность изолята к виду *A. ostoyae* или *A. borealis*. Колонии изолятов этих двух видов имели сходную морфологию. Признаков дальнейшего разграничения пары данных видов нами обнаружено не было. Таким образом, морфологические особенности вегетативного мицелия, выращенного в чистых культурах на сусло-агаре, могут служить для диагностики только двух из четырех видов *Armillaria*, встречающихся в насаждениях республики.

Одним из основных критериев определения вида у базидиальных грибов является морфоморфологические признаки плодовых тел. Карпогоры грибов рода *Armillaria* отличаются чрезвычайным варьированием по размерам, форме, окраске и т. д., что затрудняет составление определителей и работу с ними. В этой связи финский исследователь К. Корхонен предложил определять видовую принадлежность базидиум путем сравнения со сделанными им фотографиями характерных плодовых тел каждого вида [1]. М.Г. Радиевская [2], сравнивая базидиомы *A. cepistipes, A. borealis* и *A. mellea*, собранные в Подмосковье, вообще пришла к отрицанию возможности выделения их видовых отличий. В большинстве случаев плодовые тела из одного сорта сочетали в себе характерные черты двух или даже трех видов. Она предположила, что комбинация традиционных таксономических признаков у видов рода *Armillaria* происходит независимо друг от друга, а на облике плодовых тел сказывается не столько принадлежность к тому или иному виду, сколько условия обитания его представителей, включающие характер субстрата, его ув-
ложненность, уровень инсоляции и пр. К аналогичному выводу пришли также G.A. Kile и R. Watling [3], изучавшие вопросы влияния среды на морфологию базидий австралийского вида A. luteobubalina. Однако большинство микологов [1, 4, 5] придерживаются морфологической концепции видов у Armillaria. По их мнению, среди макропризнаков, обладающих повышенной ценностью в дифференцировке видов у Armillaria, важнейшими являются: цвет шляпки, присутствие, обилие и распределение чешуек на шляпке, форма и сохранность коры на ножке, размер шляпки, длина и форма ножки. На наш взгляд, среди этих признаков превалируют количественные.

Морфологическое разнообразие плодовых тел изучалось нами в 32 лесозонах, расположенных во всех геоботанических подзонах страны. Измерено и описано было подвергнуто более 500 зрелых плодовых тел грибов рода Armillaria. Видовая принадлежность каждого плодового тела была определена при помощи метода половой несовместимости. Проведенные исследования подтвердили чрезвычайное разнообразие плодовых тел грибов рода Armillaria по размерам, форме, окраске. Базидионы A. ostoyae и A. gallica выделяются характерным булавовидным утолщением у основания ножки и более тонким прерывистым кольцом. Честьки на поверхности шляпки A. gallica имеют пирамидальную форму и располагаются концентрично. A. gallica, A. borealis и A. cepistipes имеют цилиндрическую или слегка утолщающуюся к основанию ножку. A. cepistipes характеризуется гладкой с редкими чешуйками поверхностью шляпки. Видовые отличия плодовых тел изучаемых грибов более явно выражены в морфологии поверхности шляпки, кольца и в строении нижней части ножки.

Исследования инфекционных структур Armillaria в почве показали, что размеры ризоморф варьировали по видам грибов. Опираясь на морфологические особенности этих структур, все встречающиеся в республике макромицеты рода Armillaria можно условно разделить на две группы. Представители первой имеют крупные (до 5 мм диаметром), как правило, черные и редко ветвящиеся почвенные ризоморфы, радиально расходящиеся во все стороны от питательного субстрата на глубине 5–15 см. Тип ветвления этих ризоморф всегда мононаправленный. К этой группе относятся A. borealis и A. ostoyae. Ризоморфы второй группы отличались небольшим диаметром (до 2 мм) и частым дихотомическим ветвлением. Такие ризоморфы обычно имели темно-коричневую окраску. Располагались они в виде паутины под лесной подстилкой вокруг колонизированного грибом субстрата. Подобные инфекционные структуры разовывали A. gallica и A. cepistipes. Количество почвенных ризоморф значительно изменилось в зависимости от возраста, состава насаждения, типа лесостепных условий и колебалось в пределах от 4 до 30 кг абсолютно сухой массы на гектаре. Хотя выявленные особенности и не позволяют четко различать один вид от другого, однако могут в совокупности с другими показателями (морфология плодовых тел и вегетативного мицелля in vitro, приуроченность к субстрату, распространенность, патогенность и т. д.) служить для диагностики представителей этого сложного комплекса.

Экологические методы идентификации видов грибов основываются на выявлении их приуроченности к субстрату и почвенно-типологическим условиям. Развитие грибов рода Armillaria было установлено на 30 видах деревьев и кустарников. Наблюдается специализация у двух из трех видов Armillaria по группам древесных пород. Плодовые тела и подкорковый мицеллий A. ostoyae в подавляющем большинстве случаев (80,8%) встречались на хвойных породах. На сосне обыкновенной было обнаружено 58% сборов, на ели европейской – 18%. На древесине лиственных пород A. ostoyae встречался значительно реже. Все случаи были зафиксированы в смешанных хвойно-лиственных насаждениях с не случайным содержанием последних или в дубравах. Изоляты гриба, встречающиеся на древесине мягколиственных пород, развиваются сапрофитно. Лишь незначительно экземпляров гриба, развивающихся на деревьях дуба, предварительно сильно ослабленных, находили в паразитической фазе развития, тогда как на хвойных породах практически все изоляты A. ostoyae развиваются как патогены, вызывая одиночное или мелкоклоповое отмирание деревьев сосны и групповое отмирание ели.

Грибы A. cepistipes и A. gallica произрастают только на древесине лиственных пород. Примерно одна четверть изолятов этих видов встречалась на твердолиственных породах и три четверти – на мягколиственных. Если учесть, что лесные земли республики, покрытые твердо- и мягколиственными породами, соотносятся как 1:8,5 [6], можно предположить предпочтение данным видам базидиоцистов древесиной твердолиственных пород.

A. borealis можно считать омниваром, так как этот организм поселяется на большом числе видов, принадлежащих к различным семействам. В насаждениях республики гриб способен развиваться на 26 древесных породах. Встречаемость A. borealis на хвойных древесных не сколько ниже, чем на лиственных. С древесине последних было собрано 66,8% изолятов гриба, из них 11,1% – на твердолиственных и 52,7% – на мягколиственных породах.
Изучая встречаемость видов Armillaria в лесных фитоценозах нашей страны, выявили широкую распространенность грибов, их способность развиваться в насаждениях, произрастающих в условиях с различной влажностью и богатством почвы. В то же время установлено, что каждый из этих грибов предпочитает только некоторые типы условий произрастания. A. borealis чаще всего выявлялся в условиях свежей дубравы (36,4%), т. е. в ельниках, дубравах и ольшаниках кисличного типа леса. 29,9% изолятов этого гриба встречались в свежих дубравах (сосняки и березняки кисличные, ельники и дубравы орляковые) и 13,5% изолятов было обнаружено в условиях влажной садуры (сосняки, ельники, осинники и ольховые боры). Встречаемость гриба возрастает с увеличением богатства почвы и резко снижается с увеличением увлажненности. Так, если в свежих условиях находились 75,9% изолятов A. borealis, то во влажных уже 21,2%, а в сырых только 2,9% изолятов.

A. ostoyae предпочитительно развивался в свежих хвойно-лиственных насаждениях и несколько менее в свежих дубравах, практически полностью игнорируя дубравы. Так, в условиях садуры было обнаружено 48,1% изолятов A. ostoyae, в дубравах 37,1%, а в дубравах садуры лишь 4,9% изолятов. К тому же около 10% изолятов гриба было выявлено в условиях свежих и влажных песчаных почв (A2–A3). Широкая распространенность этого базидиомицета в бедных лесоэдафических условиях объясняется, по-видимому, его принадлежностью к хвойным породам, и особенно к сосне, насаждения которой произрастают именно на песчаных и супесчаных почвах. Наиболее предпочитаемыми под A. ostoyae являлись смешанные хвойно-лиственные насаждения вересковых, мшистых и орляковых типов леса.

A. cepistipes и A. gallica имеют сходную встречаемость в различных экофазах. В условиях дубравы было обнаружено 48,1% от всех изолятов A. cepistipes и 44,1% A. gallica, в условиях садуры лишь 6,2% и 20,6% соответственно. О том, что эти виды избегают насаждений, произрастающих в бедных почвенно-грунтовых условиях, говорит и тот факт, что ни один изолят данных грибов не был найден в условиях бора. Кроме того, A. cepistipes и A. gallica отличались от первых видов более высокой гифофильностью. В насаждениях, произрастающих на свежих и сырых почвах, было выявлено 24,7% A. cepistipes и 38,2% A. gallica. Данную ситуацию можно объяснить предпочтительным развитием этих видов на древесных породах, требовательных к содержанию в почве питательных веществ и влаги.

Таким образом, грибы рода Armillaria встречаются практически во всех почвенно-грунтовых условиях. A. borealis, A. cepistipes и A. gallica отдают предпочтение дубравам и дубравам (C2–C3, D2–D3). A. ostoyae чаще встречается в садурах (B2), что обусловлено распространением предпочитаемой породы-хозяина, то есть сосны обыкновенной. Общим для всех видов является избегание условий местопроизрастания, занимающих крайние положения в эдафо-фитоценотическом ряду. В сухих и бедных условиях грибы не имеют достаточного количества питательного субстрата. Распространение видов Armillaria на торфяно-болотных почвах сдерживает отсутствие способности у этих грибов развивать свои основные инфекционные структуры - ризоморфы в условиях чрезмерного увлажнения.

На базе выявленных различий в морфологии карпофоров и ризоморф данных видов, различий в их географической и экологической специализации составлен определитель «местных» популяций грибов рода Armillaria.

Литература

2. Радневская М.Г. Структура комплекса Armillaria на территории СССР: Автореф. дис. ... канд. биол. наук: 03.00.24 / Моск. гос. ун-т. – М., 1986. – 23 с.